A Discrete-Time Adaptive ILC for Systems with Random Initial Condition and Iteration-Varying Trajectory
نویسندگان
چکیده
A discrete-time adaptive ILC scheme is presented for systems with time-varying parametric uncertainties. Using the analogy between the discrete-time axis and the iterative learning axis, the new AILC can incorporate a recursive Least-Squares algorithm, hence the learning gain can be tuned iteratively along the learning axis and pointwisely along the time axis. When the initial states are random and the reference trajectory is iteration-varying, the new AILC can achieve the pointwise convergence over a finite time interval asymptotically along the iterative learning axis. An extension of the new AILC is also developed by using nonlinear data weighting to systems without assuming any growth conditions on the nonlinearity.
منابع مشابه
ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملIterative Learning Control for Batch-varying References
This paper presents iterative learning control (ILC) schemes for batch-varying references. Generally, reference or target trajectory must be identical for all iterations to implement the ILC. However, references can be changed in dynamic systems such as robotics and chemical processes according to cycle or batch. ILC schemes for batch-varying references are proposed in three forms which are inv...
متن کاملIterative learning control based on extremum seeking
This paper proposes a non-model based approach to iterative learning control (ILC) via extremumseeking. Single-input–single-output discrete-time nonlinear systems are considered, where the objective is to recursively construct an input such that the corresponding system output tracks a prescribed reference trajectory as closely as possible on finite horizon. The problem is formulated in terms o...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008